En física, una onda gravitacional es una ondulación del espacio-tiempo producida por un cuerpo masivo acelerado. Las ondas gravitacionales constituyen una consecuencia de la teoría de la relatividad general de Einstein y se transmiten a la velocidad de la luz. Hasta ahora no ha sido posible detectar ninguna de estas ondas, aunque sí existen evidencias indirectas de ellas, como el decaimiento del periodo orbital observado en un púlsar binario. Actualmente existen grandes proyectos de observatorios interferométricos que deberían ser capaces de detectar ondas gravitacionales producidas en fenómenos cataclísmicos como la explosión de una supernova cercana o una radiación de fondo gravitacional remanente del Big Bang. La detección de ondas gravitacionales constituiría una nueva e importante validación de la teoría de la relatividad general.
Las ondas gravitacionales son fluctuaciones generadas en la curvatura del espacio-tiempo que se propagan como ondas. La radiación gravitacional se genera cuando dichas ondas son emitidas por ciertos objetos o por sistemas de objetos que gravitan entre sí.
Estimaciones teóricas.
Las ondas gravitacionales son muy débiles. Las más fuertes que se podría esperar observar en la Tierra serían generadas por acontecimientos muy distantes y antiguos, como la colisión de dos estrellas de neutrones o la colisión de dos agujeros negros súper masivos, en los cuales una gran cantidad de energía se movió violentamente. Tal onda debería causar cambios relativos en distancia por todas partes en la Tierra, pero estos cambios están en un orden de menos de una parte en 1021.
La existencia y ubicuidad de las ondas gravitacionales es una predicción de la teoría de la relatividad general de Einstein. Todas las teorías competentes y viables sobre la gravitación, en concordancia al nivel de precisión de toda evidencia hallada hasta el momento, hacen predicciones sobre la naturaleza de la radiación gravitacional; estas predicciones son a veces diferentes de las predicciones de la relatividad general.
Sin embargo, en la actualidad no ha sido posible confirmar directamente la existencia de la radiación gravitacional y, mucho menos, estudiar sus propiedades.
Primeras evidencias de ondas gravitacionales.
Aunque la radiación gravitacional no ha sido aún detectada directamente, hay evidencia indirecta significativa de su existencia. En una gran cantidad de estudios, astrofísicos de todo el mundo han podido observar, en grupos de estrellas súper masivas, fenómenos que sólo pueden ser explicados con la existencia de dicha teoría.
Los físicos Russell Alan Hulse y Joseph Hooton Taylor Jr. descubrieron en 1974 el primer púlsar binario (PSR1913+16). Las observaciones durante varios años han confirmado que el período de rotación de ambos objetos aumenta con el tiempo de la manera predicha por la teoría de la relatividad general, perdiendo energía en forma de ondas gravitacionales. Aunque estas ondas no han sido detectadas de forma directa, Taylor y Hulse demostraron que la rotación del sistema binario se aceleraba a medida que las estrellas giraban en espiral cada vez más juntas, exactamente tal y como se predecía si estuviera emitiendo energía en forma de ondas gravitacionales. Un estudio realizado por O. Laudani, sobre la base de no a diferencia de los tiempos de marea de sol y la luna muestra, de manera directa, que la velocidad de gravedad es igual a la velocidad de la luz. Esto significa que la fuerza de gravedad es una onda que, al igual que las electromagnéticas viaja a casi 300.000 km por segundo.
Este descubrimiento se considera como la demostración de la existencia de ondas gravitacionales. Por este motivo, Hulse y Taylor recibieron el Premio Nobel de Física del año 1993. Más recientemente (2005), se ha descubierto un segundo púlsar binario, PSR J0737-3039, cuyo comportamiento parece confirmar también las predicciones de la relatividad general con respecto a la energía emitida en forma de ondas gravitacionales. El púlsar binario tiene una órbita cuya distancia decae en unos 7 mm por día.
Objetos emisores de ondas gravitacionales.
La amplitud predicha para estas ondas y los efectos observables que podrían producir son muy débiles, de modo que su detección directa es extremadamente difícil. Si existen las ondas gravitacionales su amplitud sería muy inferior al ruido vibracional procedente de otras fuentes. Tan sólo los fenómenos más violentos del Universo podrían producir ondas gravitacionales susceptibles de ser detectadas.
Los objetos que deberían emitir ondas de gravedad detectables de manera directa son objetos muy masivos sometidos a fuertes aceleraciones o cuerpos masivos no homogéneos rotando a gran velocidad. Se espera poder encontrar ondas gravitacionales producidas en fenómenos cataclísmicos como:
La explosión de una supernova.
La formación de un agujero negro.
El choque de cuerpos masivos como estrellas de neutrones o la coalescencia de agujeros negros.
La rotación de una estrella de neutrones inhomogénea.
Radiación gravitacional remanente del Big Bang. Este último caso ofrecería datos únicos sobre la formación del Universo en el periodo anterior a la edad oscura del Universo en la que el Universo era opaco a la radiación electromagnética.
Observatorios de ondas gravitacionales
Actualmente existen diferentes proyectos de observación de ondas gravitacionales, como LIGO (Estados Unidos), TAMA 300 (Japón), GEO 600 (Alemania y Reino Unido), o VIRGO (Francia e Italia). Los más pesimistas consideran que la detección real de ondas gravitacionales sólo podrá ser realizada desde el espacio. Una misión espacial denominada LISA se encuentra en fase de estudio para constituir el primer observatorio espacial de ondas gravitacionales y podría estar operativo alrededor del 2020.
GEO 600.
Geo 600 es un detector de ondas gravitacionales, también llamadas señales púlsar, que reside en las cercanías de Hanóver, Alemania (N 52.24°, E 9.81°). Este instrumento junto con los detectores interferométricos, son los detectores de ondas gravitacionales más sensibles jamás construidos. Están diseñados para detectar ondulaciones muy pequeñas en la estructura del espacio-tiempo causadas por fenómenos astrofísicos, del orden de 10-21 del tamaño de un átomo en comparación con la distancia entre el Sol y la Tierra. GEO 600 puede detectar ondas gravitatorias en un rango de frecuencia de 50 Hz a 1.5 kHz.1 La construcción de este proyecto comenzó en 1995.2
En noviembre del 2005, se anunció que LIGO y GEO emprenderían una marcha científica conjunta en diferentes proyectos. LIGO cuenta con dos instrumentos de búsqueda de ondas gravitacionales en EE. UU., una situada en Livingston, Louisiana, y otra en Hanford, Washington. Con estos tres instrumentos se recopilan datos de todo un año, con descansos para ajustes y actualizaciones. Actualmente se está trabajando en el análisis S5GC1, y con este será el quito que haya hecho hasta ahora. En los análisis anteriores al S5GC1 no se detectaron señales, pero la calidad de los instrumentos usados y de los análisis mejoró notáblemente haciendo de esta quinta versión la mejor hasta el momento. Se espera en este nuevo análisis la llegada a la Tierra dos señales de ondas gravitatorias, esta sería la primera detección directa de la radiación gravitacional.
Discusiones sobre el ruido detectado por GEO 600 y las propiedades holográficas del espacio-tiempo.
El 15 de enero del 2009, se informó en la revista New Scientist que el ruido que aparecía presente en los análisis podía ser debido a que el instrumento usado era sensible a las inapreciables fluctuaciones cuánticas del espacio-tiempo. Esta afirmación fue realizada por Craig Hogan, científico de Fermilab, en base a su teoría de cómo se influencian las fluctuaciones gravitatorias por el principio holográfico. (Hogan, Craig J.; Mark G. Jackson (June 2009). «Holographic geometry and noise in matrix theory». Phys. Rev. D 79 (12): pp. 124009)
En junio del 2008 la revista publicó los trabajos de "Ruido Holográfico" del científico Hogan en colaboración con GEO 600. Posteriormente afirmaron en la misma revista que el exceso de ruido de los análisis era exáctamente igual a la de los cálculos de Hogan. Según Karsten Danzmann, investigador principal de GEO 600, "El trabajo diario y la mejora de las herramientas siempre producirá un ruido extra que se deberá eliminar, de cara a poder comprobar la fidelidad del ruido recibido por el supuesto púlsar. Trabajamos para identificar la causa, eliminarla y hacer frente a la próxima fuente de exceso de ruido."
No hay comentarios:
Publicar un comentario